
README.md 9/16/2022

1 / 30

[English] | [⽇本語]

GitHub🦅DownloadsGitHub🦅Downloads 9.2k9.2k GitHub🦅StarsGitHub🦅Stars 728728 latest-versionlatest-version v1.5.1v1.5.1 tag-4 CODE BLUE BlueboxCODE BLUE Bluebox 20222022

rs reportrs report A+A+ Maintenance LevelMaintenance Level Actively DevelopedActively Developed TwitterTwitter

About Hayabusa

Hayabusa is a Windows event log fast forensics timeline generator and threat hunting tool created by

the Yamato Security group in Japan. Hayabusa means "peregrine falcon" in Japanese and was chosen as

peregrine falcons are the fastest animal in the world, great at hunting and highly trainable. It is written in

Rust and supports multi-threading in order to be as fast as possible. We have provided a tool to convert

Sigma rules into Hayabusa rule format. The Sigma-compatible Hayabusa detection rules are written in YML

in order to be as easily customizable and extensible as possible. Hayabusa can be run either on single

running systems for live analysis, by gathering logs from single or multiple systems for offline analysis, or by

running the Hayabusa artifact with Velociraptor for enterprise-wide threat hunting and incident response.

The output will be consolidated into a single CSV timeline for easy analysis in Excel, Timeline Explorer,

Elastic Stack, Timesketch, etc...

Table of Contents

About Hayabusa

Table of Contents

Main Goals

Threat Hunting and Enterprise-wide DFIR

Fast Forensics Timeline Generation

Screenshots

Startup

Terminal Output

Event Fequency Timeline (-V option)

Results Summary

Analysis in Excel

Analysis in Timeline Explorer

Critical Alert Filtering and Computer Grouping in Timeline Explorer

file:///Users/reguser/Documents/YamatoSecurity/hayabusa/README-Japanese.md
https://github.com/Yamato-Security/hayabusa/releases
https://rust-reportcard.xuri.me/report/github.com/Yamato-Security/hayabusa
https://twitter.com/SecurityYamato
https://yamatosecurity.connpass.com/
https://en.wikipedia.org/wiki/Peregrine_falcon%22
https://www.rust-lang.org/
https://github.com/Yamato-Security/hayabusa-rules/tree/main/tools/sigmac
https://github.com/SigmaHQ/sigma
https://docs.velociraptor.app/exchange/artifacts/pages/windows.eventlogs.hayabusa/
https://docs.velociraptor.app/
https://ericzimmerman.github.io/#!index.md
file:///Users/reguser/Documents/YamatoSecurity/hayabusa/doc/ElasticStackImport/ElasticStackImport-English.md
https://timesketch.org/

README.md 9/16/2022

2 / 30

Analysis with the Elastic Stack Dashboard

Analysis in Timesketch

Analyzing Sample Timeline Results

Features

Downloads

Git cloning

Advanced: Compiling From Source (Optional)

Updating Rust Packages

Cross-compiling 32-bit Windows Binaries

macOS Compiling Notes

Linux Compiling Notes

Cross-compiling Linux MUSL Binaries

Running Hayabusa

Caution: Anti-Virus/EDR Warnings and Slow Runtimes

Windows

Linux

macOS

Usage

Main commands

Command Line Options

Usage Examples

Pivot Keyword Generator

Logon Summary Generator

Testing Hayabusa on Sample Evtx Files

Hayabusa Output

Profiles

1. minimal profile output

2. standard profile output

3. verbose profile output

4. all-field-info profile output

5. all-field-info-verbose profile output

6. super-verbose profile output

7. timesketch-minimal profile output

8. timesketch-verbose profile output

Profile Comparison

Profile Field Aliases

Level Abbrevations

MITRE ATT&CK Tactics Abbreviations

Channel Abbreviations

Other Abbreviations

Progress Bar

Color Output

Results Summary

Event Fequency Timeline

Dates with most total detections

Top 5 computers with most unique detections

README.md 9/16/2022

3 / 30

Hayabusa Rules

Hayabusa v.s. Converted Sigma Rules

Detection Rule Tuning

Detection Level Tuning

Event ID Filtering

Other Windows Event Log Analyzers and Related Resources

Windows Logging Recommendations

Sysmon Related Projects

Community Documentation

English

Japanese

Contribution

Bug Submission

License

Twitter

Main Goals

Threat Hunting and Enterprise-wide DFIR

Hayabusa currently has over 2600 Sigma rules and over 130 Hayabusa built-in detection rules with more

rules being added regularly. It can be used for enterprise-wide proactive threat hunting as well as DFIR

(Digital Forensics and Incident Response) for free with Velociraptor's Hayabusa artifact. By combining these

two open-source tools, you can essentially retroactively reproduce a SIEM when there is no SIEM setup in

the environment. You can learn about how to do this by watching Eric Capuano's Velociraptor walkthrough

here.

Fast Forensics Timeline Generation

Windows event log analysis has traditionally been a very long and tedious process because Windows event

logs are 1) in a data format that is hard to analyze and 2) the majority of data is noise and not useful for

investigations. Hayabusa's goal is to extract out only useful data and present it in a concise as possible

easy-to-read format that is usable not only by professionally trained analysts but any Windows system

administrator. Hayabusa hopes to let analysts get 80% of their work done in 20% of the time when

compared to traditional Windows event log analysis.

Screenshots

Startup

https://docs.velociraptor.app/
https://docs.velociraptor.app/exchange/artifacts/pages/windows.eventlogs.hayabusa/
https://twitter.com/eric_capuano
https://www.youtube.com/watch?v=Q1IoGX--814

README.md 9/16/2022

4 / 30

Terminal Output

Event Fequency Timeline (-V option)

README.md 9/16/2022

5 / 30

Results Summary

Analysis in Excel

README.md 9/16/2022

6 / 30

Analysis in Timeline Explorer

Critical Alert Filtering and Computer Grouping in Timeline Explorer

README.md 9/16/2022

7 / 30

Analysis with the Elastic Stack Dashboard

README.md 9/16/2022

8 / 30

Analysis in Timesketch

Analyzing Sample Timeline Results

You can check out a sample CSV timeline here.

You can learn how to analyze CSV timelines in Excel and Timeline Explorer here.

You can learn how to import CSV files into Elastic Stack here.

https://github.com/Yamato-Security/hayabusa/tree/main/sample-results
file:///Users/reguser/Documents/YamatoSecurity/hayabusa/doc/CSV-AnalysisWithExcelAndTimelineExplorer-English.pdf
file:///Users/reguser/Documents/YamatoSecurity/hayabusa/doc/ElasticStackImport/ElasticStackImport-English.md

README.md 9/16/2022

9 / 30

You can learn how to import CSV files into Timesketch here.

Features

Cross-platform support: Windows, Linux, macOS.

Developed in Rust to be memory safe and faster than a hayabusa falcon!

Multi-thread support delivering up to a 5x speed improvement.

Creates a single easy-to-analyze CSV timeline for forensic investigations and incident response.

Threat hunting based on IoC signatures written in easy to read/create/edit YML based hayabusa

rules.

Sigma rule support to convert sigma rules to hayabusa rules.

Currently it supports the most sigma rules compared to other similar tools and even supports count

rules and new aggregators such as |equalsfield.
Event log statistics. (Useful for getting a picture of what types of events there are and for tuning your

log settings.)

Rule tuning configuration by excluding unneeded or noisy rules.

MITRE ATT&CK mapping of tactics.

Rule level tuning.

Create a list of unique pivot keywords to quickly identify abnormal users, hostnames, processes,

etc... as well as correlate events.

Output all fields for more thorough investigations.

Successful and failed logon summary.

Enterprise-wide threat hunting and DFIR on all endpoints with Velociraptor.

Output to CSV, JSON or JSONL.

Downloads

Please download the latest stable version of Hayabusa with compiled binaries or compile the source code

from the Releases page.

Git cloning

You can git clone the repository with the following command and compile binary from source code:

Warning: The main branch of the repository is for development purposes so you may be able to access

new features not yet officially released, however, there may be bugs so consider it unstable.

git clone https://github.com/Yamato-Security/hayabusa.git --recursive

Note: If you forget to use --recursive option, the rules folder, which is managed as a git submodule, will

not be cloned.

You can sync the rules folder and get latest Hayabusa rules with git pull --recurse-submodules or

use the following command:

file:///Users/reguser/Documents/YamatoSecurity/hayabusa/doc/TimesketchImport/TimesketchImport-English.md
https://docs.velociraptor.app/
https://github.com/Yamato-Security/hayabusa/releases

README.md 9/16/2022

10 / 30

hayabusa-1.6.0-win-x64.exe -u

If the update fails, you may need to rename the rules folder and try again.

Caution: When updating, rules and config files in the rules folder are replaced with the latest

rules and config files in the hayabusa-rules repository. Any changes you make to existing files

will be overwritten, so we recommend that you make backups of any files that you edit before

updating. If you are performing level tuning with --level-tuning, please re-tune your rule
files after each update. If you add new rules inside of the rules folder, they will not be

overwritten or deleted when updating.

Advanced: Compiling From Source (Optional)

If you have Rust installed, you can compile from source with the following command:

cargo build --release

You can download the latest unstable version from the main branch or the latest stable version from the

Releases page.

Be sure to periodically update Rust with:

rustup update stable

The compiled binary will be outputted in the ./target/release folder.

Updating Rust Packages

You can update to the latest Rust crates before compiling:

cargo update

Please let us know if anything breaks after you update.

Cross-compiling 32-bit Windows Binaries

You can create 32-bit binaries on 64-bit Windows systems with the following:

rustup install stable-i686-pc-windows-msvc
rustup target add i686-pc-windows-msvc
rustup run stable-i686-pc-windows-msvc cargo build --release

https://github.com/Yamato-Security/hayabusa-rules
https://github.com/Yamato-Security/hayabusa/releases

README.md 9/16/2022

11 / 30

macOS Compiling Notes

If you receive compile errors about openssl, you will need to install Homebrew and then install the following

packages:

brew install pkg-config
brew install openssl

Linux Compiling Notes

If you receive compile errors about openssl, you will need to install the following package.

Ubuntu-based distros:

sudo apt install libssl-dev

Fedora-based distros:

sudo yum install openssl-devel

Cross-compiling Linux MUSL Binaries

On a Linux OS, first install the target.

rustup install stable-x86_64-unknown-linux-musl
rustup target add x86_64-unknown-linux-musl

Compile with:

cargo build --release --target=x86_64-unknown-linux-musl

The MUSL binary will be created in the ./target/x86_64-unknown-linux-musl/release/ directory.

MUSL binaries are are about 15% slower than the GNU binaries.

Running Hayabusa

Caution: Anti-Virus/EDR Warnings and Slow Runtimes

https://brew.sh/

README.md 9/16/2022

12 / 30

You may receive an alert from anti-virus or EDR products when trying to run hayabusa or even just when

downloading the .yml rules as there will be keywords like mimikatz and suspicious PowerShell commands

in the detection signature. These are false positives so will need to configure exclusions in your security

products to allow hayabusa to run. If you are worried about malware or supply chain attacks, please check

the hayabusa source code and compile the binaries yourself.

You may experience slow runtime especially on the first run after a reboot due to the real-time protection of

Windows Defender. You can avoid this by temporarily turning real-time protection off or adding an exclusion

to the hayabusa runtime directory. (Please take into consideration the security risks before doing these.)

Windows

In a Command/PowerShell Prompt or Windows Terminal, just run the appropriate 32-bit or 64-bit Windows

binary.

Example: hayabusa-1.6.0-windows-x64.exe

Linux

You first need to make the binary executable.

chmod +x ./hayabusa-1.6.0-linux-x64-gnu

Then run it from the Hayabusa root directory:

./hayabusa-1.6.0-linux-x64-gnu

macOS

From Terminal or iTerm2, you first need to make the binary executable.

chmod +x ./hayabusa-1.6.0-mac-intel

Then, try to run it from the Hayabusa root directory:

./hayabusa-1.6.0-mac-intel

On the latest version of macOS, you may receive the following security error when you try to run it:

README.md 9/16/2022

13 / 30

Click "Cancel" and then from System Preferences, open "Security & Privacy" and from the General tab,

click "Allow Anyway".

README.md 9/16/2022

14 / 30

After that, try to run it again.

./hayabusa-1.6.0-mac-intel

The following warning will pop up, so please click "Open".

README.md 9/16/2022

15 / 30

You should now be able to run hayabusa.

Usage

Main commands

default: Create a fast forensics timeline.

--level-tuning: Custom tune the alerts' level.
-L, --logon-summary: Print a summary of logon events.
-P, --pivot-keywords-list: Print a list of suspicious keywords to pivot on.
-s, --statistics: Print metrics of the count and percentage of events based on Event ID.
--set-default-profile: Change the default profile.
-u, --update: Sync the rules to the latest rules in the hayabusa-rules GitHub repository.

Command Line Options

USAGE:
 hayabusa.exe <INPUT> [OTHER-ACTIONS] [OPTIONS]

INPUT:

https://github.com/Yamato-Security/hayabusa-rules

README.md 9/16/2022

16 / 30

 -d, --directory <DIRECTORY> Directory of multiple .evtx files
 -f, --file <FILE> File path to one .evtx file
 -l, --live-analysis Analyze the local
C:\Windows\System32\winevt\Logs folder

ADVANCED:
 -c, --rules-config <DIRECTORY> Specify custom rule config
directory (default: ./rules/config)
 -Q, --quiet-errors Quiet errors mode: do not
save error logs
 -r, --rules <DIRECTORY/FILE> Specify a custom rule
directory or file (default: ./rules)
 -t, --thread-number <NUMBER> Thread number (default:
optimal number for performance)
 --target-file-ext <EVTX_FILE_EXT>... Specify additional target
file extensions (ex: evtx_data) (ex: evtx1 evtx2)

OUTPUT:
 -j, --json Save the timeline in JSON format (ex: -j -o
results.json)
 -J, --jsonl Save the timeline in JSONL format (ex: -J -
o results.jsonl)
 -o, --output <FILE> Save the timeline in CSV format (ex:
results.csv)
 -P, --profile <PROFILE> Specify output profile (minimal, standard,
verbose, verbose-all-field-info, verbose-details-and-all-field-info)

DISPLAY-SETTINGS:
 --no-color Disable color output
 --no-summary Do not display result summary
 -q, --quiet Quiet mode: do not display the launch
banner
 -v, --verbose Output verbose information
 -V, --visualize-timeline Output event frequency timeline

FILTERING:
 -D, --deep-scan Disable event ID filter to scan
all events (slower)
 --enable-deprecated-rules Enable rules marked as deprecated
 --exclude-status <STATUS>... Ignore rules according to status
(ex: experimental) (ex: stable test)
 -m, --min-level <LEVEL> Minimum level for rules (default:
informational)
 -n, --enable-noisy-rules Enable rules marked as noisy
 --timeline-end <DATE> End time of the event logs to load
(ex: "2022-02-22 23:59:59 +09:00")
 --timeline-start <DATE> Start time of the event logs to
load (ex: "2020-02-22 00:00:00 +09:00")

OTHER-ACTIONS:
 --contributors Print the list of contributors
 -L, --logon-summary Print a summary of successful
and failed logons
 --level-tuning [<FILE>] Tune alert levels (default:

README.md 9/16/2022

17 / 30

./rules/config/level_tuning.txt)
 -p, --pivot-keywords-list Create a list of pivot keywords
 -s, --statistics Print statistics of event IDs
 --set-default-profile <PROFILE> Set default output profile
 -u, --update-rules Update to the latest rules in
the hayabusa-rules github repository

TIME-FORMAT:
 --European-time Output timestamp in European time format
(ex: 22-02-2022 22:00:00.123 +02:00)
 --RFC-2822 Output timestamp in RFC 2822 format (ex:
Fri, 22 Feb 2022 22:00:00 -0600)
 --RFC-3339 Output timestamp in RFC 3339 format (ex:
2022-02-22 22:00:00.123456-06:00)
 --US-military-time Output timestamp in US military time format
(ex: 02-22-2022 22:00:00.123 -06:00)
 --US-time Output timestamp in US time format (ex: 02-
22-2022 10:00:00.123 PM -06:00)
 -U, --UTC Output time in UTC format (default: local
time)

Usage Examples

Run hayabusa against one Windows event log file with default standard profile:

hayabusa-1.6.0-win-x64.exe -f eventlog.evtx

Run hayabusa against the sample-evtx directory with multiple Windows event log files with the

verbose profile:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -P verbose

Export to a single CSV file for further analysis with excel, timeline explorer, elastic stack, etc... and

include all field information (Warning: your file output size will become much larger with the

verbose-details-and-all-field-info profile!):

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -o results.csv -P
verbose-details-and-all-field-info

Save the timline in JSON format:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -o results.json -j

README.md 9/16/2022

18 / 30

Only run hayabusa rules (the default is to run all the rules in -r .\rules):

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r .\rules\hayabusa -
o results.csv

Only run hayabusa rules for logs that are enabled by default on Windows:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r
.\rules\hayabusa\default -o results.csv

Only run hayabusa rules for sysmon logs:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r
.\rules\hayabusa\sysmon -o results.csv

Only run sigma rules:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r .\rules\sigma -o
results.csv

Enable deprecated rules (those with status marked as deprecated) and noisy rules (those whose
rule ID is listed in .\rules\config\noisy_rules.txt):

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx --enable-noisy-rules
--enable-deprecated-rules -o results.csv

Only run rules to analyze logons and output in the UTC timezone:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r
.\rules\hayabusa\default\events\Security\Logons -U -o results.csv

Run on a live Windows machine (requires Administrator privileges) and only detect alerts (potentially

malicious behavior):

hayabusa-1.6.0-win-x64.exe -l -m low

Create a list of pivot keywords from critical alerts and save the results. (Results will be saved to

keywords-Ip Addresses.txt, keywords-Users.txt, etc...):

README.md 9/16/2022

19 / 30

hayabusa-1.6.0-win-x64.exe -l -m critical -p -o keywords

Print Event ID statistics:

hayabusa-1.6.0-win-x64.exe -f Security.evtx -s

Print logon summary:

hayabusa-1.6.0-win-x64.exe -L -f Security.evtx -s

Print verbose information (useful for determining which files take long to process, parsing errors,

etc...):

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -v

Verbose output example:

Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1027.004_Obfuscated Files or Information\u{a0}Compile
After Delivery/sysmon.evtx"
1 / 509 [>--
--
-] 0.20 % 1s
Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1558.004_Steal or Forge Kerberos Tickets AS-REP
Roasting/Security.evtx"
2 / 509 [>--
--
-] 0.39 % 1s
Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1558.003_Steal or Forge Kerberos
Tickets\u{a0}Kerberoasting/Security.evtx"
3 / 509 [>--
--
-] 0.59 % 1s
Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1197_BITS Jobs/Windows-BitsClient.evtx"
4 / 509 [=>---
--
-] 0.79 % 1s
Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1218.004_Signed Binary Proxy
Execution\u{a0}InstallUtil/sysmon.evtx"
5 / 509 [=>---

README.md 9/16/2022

20 / 30

--
-] 0.98 % 1s

Output to a CSV format compatible to import into Timesketch:

hayabusa-1.6.0-win-x64.exe -d ../hayabusa-sample-evtx --RFC-3339 -o
timesketch-import.csv -P timesketch -U

Quiet error mode: By default, hayabusa will save error messages to error log files. If you do not want

to save error messages, please add -Q.

Pivot Keyword Generator

You can use the -p or --pivot-keywords-list option to create a list of unique pivot keywords to

quickly identify abnormal users, hostnames, processes, etc... as well as correlate events. You can

customize what keywords you want to search for by editing ./config/pivot_keywords.txt. This is the
default setting:

Users.SubjectUserName
Users.TargetUserName
Users.User
Logon IDs.SubjectLogonId
Logon IDs.TargetLogonId
Workstation Names.WorkstationName
Ip Addresses.IpAddress
Processes.Image

The format is KeywordName.FieldName. For example, when creating the list of Users, hayabusa will list
up all the values in the SubjectUserName, TargetUserName and User fields. By default, hayabusa will

return results from all events (informational and higher) so we highly recommend combining the --pivot-
keyword-list option with the -m or --min-level option. For example, start off with only creating

keywords from critical alerts with -m critical and then continue with -m high, -m medium, etc...
There will most likely be common keywords in your results that will match on many normal events, so after

manually checking the results and creating a list of unique keywords in a single file, you can then create a

narrowed down timeline of suspicious activity with a command like grep -f keywords.txt
timeline.csv.

Logon Summary Generator

You can use the -L or --logon-summary option to output logon information summary (logon usernames

and successful and failed logon count). You can display the logon information for one evtx file with -f or

multiple evtx files with the -d option.

Testing Hayabusa on Sample Evtx Files

https://timesketch.org/

README.md 9/16/2022

21 / 30

We have provided some sample evtx files for you to test hayabusa and/or create new rules at

https://github.com/Yamato-Security/hayabusa-sample-evtx

You can download the sample evtx files to a new hayabusa-sample-evtx sub-directory with the

following command:

git clone https://github.com/Yamato-Security/hayabusa-sample-evtx.git

Hayabusa Output

Profiles

Hayabusa has 5 pre-defined profiles to use in config/profiles.yaml:

�. minimal
�. standard (default)

�. verbose
�. all-field-info
�. all-field-info-verbose
�. super-verbose
�. timesketch-minimal
�. timesketch-verbose

You can easily customize or add your own profiles by editing this file. You can also easily change the default

profile with --set-default-profile <profile>.

1. minimal profile output

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %RuleTitle%, %Details%

2. standard profile output

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %RecordID%, %RuleTitle%,
%Details%

3. verbose profile output

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %MitreTactics, %MitreTags%,
%OtherTags%, %RecordID%, %RuleTitle%, %Details%, %RuleFile%, %EvtxFile%

4. all-field-info profile output

Instead of outputting the minimal details information, all field information in the EventData section will

be outputted.

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %RecordID%, %RuleTitle%,
%AllFieldInfo%, %RuleFile%, %EvtxFile%

https://github.com/Yamato-Security/hayabusa-sample-evtx

README.md 9/16/2022

22 / 30

5. all-field-info-verbose profile output

all-field-info profile plus tag information.

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %MitreTactics, %MitreTags%,
%OtherTags%, %RecordID%, %RuleTitle%, %AllFieldInfo%, %RuleFile%, %EvtxFile%

6. super-verbose profile output

verbose profile plus all field information. (Warning: this will usually double the output file size!)

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %MitreTactics, %MitreTags%,
%OtherTags%, %RecordID%, %RuleTitle%, %Details%, %RuleFile%, %EvtxFile%, %AllFieldInfo%

7. timesketch-minimal profile output

The verbose profile that is compatible with importing into Timesketch.

%Timestamp%, hayabusa, %RuleTitle%, %Computer%, %Channel%, %EventID%, %Level%,
%MitreTactics, %MitreTags%, %OtherTags%, %RecordID%, %Details%, %RuleFile%, %EvtxFile%

8. timesketch-verbose profile output

The super-verbose profile that is compatible with importing into Timesketch.

%Timestamp%, hayabusa, %RuleTitle%, %Computer%, %Channel%, %EventID%, %Level%,
%MitreTactics, %MitreTags%, %OtherTags%, %RecordID%, %Details%, %RuleFile%, %EvtxFile%,
%AllFieldInfo%

Profile Comparison

The following benchmarks were conducted on a 2018 MBP with 7.5GB of evtx data.

Profile Processing Time Output Filesize

minimal 16 minutes 18 seconds 690 MB

standard 16 minutes 23 seconds 710 MB

verbose 17 minutes 990 MB

timesketch-minimal 17 minutes 1015 MB

all-field-info-verbose 16 minutes 50 seconds 1.6 GB

super-verbose 17 minutes 12 seconds 2.1 GB

Profile Field Aliases

Alias name Hayabusa output information

https://timesketch.org/
https://timesketch.org/

README.md 9/16/2022

23 / 30

Alias name Hayabusa output information

%Timestamp%

Default is YYYY-MM-DD HH:mm:ss.sss +hh:mm format. <Event><System>
<TimeCreated SystemTime> field in the event log. The default timezone will be

the local timezone but you can change the timezone to UTC with the --UTC option.

%Computer% The <Event><System><Computer> field.

%Channel% The name of log. <Event><System><Channel> field.

%EventID% The <Event><System><EventID> field.

%Level%
The level field in the YML detection rule. (informational, low, medium, high,
critical)

%MitreTactics% MITRE ATT&CK tactics (Ex: Initial Access, Lateral Movement, etc...).

%MitreTags% MITRE ATT&CK Group ID, Technique ID and Software ID.

%OtherTags%
Any keyword in the tags field in a YML detection rule which is not included in

MitreTactics or MitreTags.

%RecordID% The Event Record ID from <Event><System><EventRecordID> field.

%RuleTitle% The title field in the YML detection rule.

%Details%

The details field in the YML detection rule, however, only hayabusa rules have this

field. This field gives extra information about the alert or event and can extract useful

data from the fields in event logs. For example, usernames, command line

information, process information, etc... When a placeholder points to a field that does

not exist or there is an incorrect alias mapping, it will be outputted as n/a (not

available). If the details field is not specified (i.e. sigma rules), default details
messages to extract fields defined in ./rules/config/default_details.txt
will be outputted. You can add more default details messages by adding the

Provider Name, EventID and details message you want to output in

default_details.txt. When no details field is defined in a rule nor in

default_details.txt, all fields will be outputted to the details column.

%AllFieldInfo% All field information.

%RuleFile% The filename of the detection rule that generated the alert or event.

%EvtxFile% The evtx filename that caused the alert or event.

You can use these aliases in your output profiles, as well as define other event key alises to output other

fields.

Level Abbrevations

In order to save space, we use the following abbrevations when displaying the alert level.

crit: critical
high: high
med : med

https://attack.mitre.org/tactics/enterprise/
https://github.com/Yamato-Security/hayabusa-rules/blob/main/README.md#eventkey-aliases

README.md 9/16/2022

24 / 30

low : low
info: informational

MITRE ATT&CK Tactics Abbreviations

In order to save space, we use the following abbreviations when displaying MITRE ATT&CK tactic tags. You

can freely edit these abbreviations in the ./config/output_tag.txt configuration file. If you want to

output all the tags defined in a rule, please specify the --all-tags option.

Recon : Reconnaissance

ResDev : Resource Development

InitAccess : Initial Access

Exec : Execution

Persis : Persistence

PrivEsc : Privilege Escalation

Evas : Defense Evasion

CredAccess : Credential Access

Disc : Discovery

LatMov : Lateral Movement

Collect : Collection

C2 : Command and Control

Exfil : Exfiltration

Impact : Impact

Channel Abbreviations

In order to save space, we use the following abbreviations when displaying Channel. You can freely edit

these abbreviations in the ./rules/config/channel_abbreviations.txt configuration file.

App : Application
AppLocker : Microsoft-Windows-AppLocker/*
BitsCli : Microsoft-Windows-Bits-Client/Operational
CodeInteg : Microsoft-Windows-CodeIntegrity/Operational
Defender : Microsoft-Windows-Windows Defender/Operational
DHCP-Svr : Microsoft-Windows-DHCP-Server/Operational
DNS-Svr : DNS Server
DvrFmwk : Microsoft-Windows-DriverFrameworks-UserMode/Operational
Exchange : MSExchange Management
Firewall : Microsoft-Windows-Windows Firewall With Advanced Security/Firewall
KeyMgtSvc : Key Management Service
LDAP-Cli : Microsoft-Windows-LDAP-Client/Debug
NTLM Microsoft-Windows-NTLM/Operational
OpenSSH : OpenSSH/Operational
PrintAdm : Microsoft-Windows-PrintService/Admin
PrintOp : Microsoft-Windows-PrintService/Operational
PwSh : Microsoft-Windows-PowerShell/Operational
PwShClassic : Windows PowerShell
RDP-Client : Microsoft-Windows-TerminalServices-RDPClient/Operational

README.md 9/16/2022

25 / 30

Sec : Security
SecMitig : Microsoft-Windows-Security-Mitigations/*
SmbCliSec : Microsoft-Windows-SmbClient/Security
SvcBusCli : Microsoft-ServiceBus-Client
Sys : System
Sysmon : Microsoft-Windows-Sysmon/Operational
TaskSch : Microsoft-Windows-TaskScheduler/Operational
WinRM : Microsoft-Windows-WinRM/Operational
WMI : Microsoft-Windows-WMI-Activity/Operational

Other Abbreviations

The following abbreviations are used in rules in order to make the output as concise as possible:

Acct -> Account

Addr -> Address

Auth -> Authentication

Cli -> Client

Cmd -> Command

Comp -> Computer

Conn -> Connection

Dir -> Directory

Dst -> Destination

Exec -> Execution

Grp -> Group

LID -> Logon ID

Net -> Network

Obj -> Object

Proto -> Protocol

Sig -> Signature

Susp -> Suspicious

Src -> Source

Svc -> Service

Svr -> Server

Tgt -> Target

Op -> Operation

Pkg -> Package

Priv -> Privilege

Proc -> Process

PID -> Process ID

PGUID -> Process GUID (Global Unique ID)

Ver -> Version

Progress Bar

README.md 9/16/2022

26 / 30

The progress bar will only work with multiple evtx files. It will display in real time the number and percent of

evtx files that it has finished analyzing.

Color Output

The alerts will be outputted in color based on the alert level. You can change the default colors in the
config file at ./config/level_color.txt in the format of level,(RGB 6-digit ColorHex). If you
want to disable color output, you can use --no-color option.

Results Summary

Event Fequency Timeline

If you add -V or --visualize-timeline option, the Event Frequency Timeline feature displays a

sparkline frequency timeline of detected events. Note: There needs to be more than 5 events. Also, the

characters will not render correctly on the default Command Prompt or PowerShell Prompt, so please use a

terminal like Windows Terminal, iTerm2, etc...

Dates with most total detections

A summary of the dates with the most total detections categorized by level (critical, high, etc...).

Top 5 computers with most unique detections

The top 5 computers with the most unique detections categorized by level (critical, high, etc...).

Hayabusa Rules

Hayabusa detection rules are written in a sigma-like YML format and are located in the rules folder. In the

future, we plan to host the rules at https://github.com/Yamato-Security/hayabusa-rules so please send any

issues and pull requests for rules there instead of the main hayabusa repository.

Please read the hayabusa-rules repository README to understand about the rule format and how to create

rules.

All of the rules from the hayabusa-rules repository should be placed in the rules folder. informational
level rules are considered events, while anything with a level of low and higher are considered alerts.

The hayabusa rule directory structure is separated into 3 directories:

default: logs that are turned on in Windows by default.
non-default: logs that need to be turned on through group policy, security baselines, etc...
sysmon: logs that are generated by sysmon.
testing: a temporary directory to put rules that you are currently testing.

Rules are further seperated into directories by log type (Example: Security, System, etc...) and are named in

the following format:

Alert format: <EventID>_<EventDescription>_<AttackDescription>.yml
Alert example: 1102_SecurityLogCleared_PossibleAntiForensics.yml

https://github.com/Yamato-Security/hayabusa-rules
https://github.com/Yamato-Security/hayabusa-rules/blob/main/README.md
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

README.md 9/16/2022

27 / 30

Event format: <EventID>_<EventDescription>.yml
Event example: 4776_NTLM-LogonToLocalAccount.yml

Please check out the current rules to use as a template in creating new ones or for checking the detection

logic.

Hayabusa v.s. Converted Sigma Rules

Sigma rules need to first be converted to hayabusa rule format explained here. Almost all hayabusa rules

are compatible with the sigma format so you can use them just like sigma rules to convert to other SIEM

formats. Hayabusa rules are designed solely for Windows event log analysis and have the following benefits:

�. An extra details field to display additional information taken from only the useful fields in the log.

�. They are all tested against sample logs and are known to work.

Some sigma rules may not work as intended due to bugs in the conversion process,

unsupported features, or differences in implementation (such as in regular expressions).

�. Extra aggregators not found in sigma, such as |equalsfield.

Limitations: To our knowledge, hayabusa provides the greatest support for sigma rules out of any open

source Windows event log analysis tool, however, there are still rules that are not supported:

�. Rules that use regular expressions that do not work with the Rust regex crate

�. Aggregation expressions besides count in the sigma rule specification.

�. Rules that use |near.

Detection Rule Tuning

Like firewalls and IDSes, any signature-based tool will require some tuning to fit your environment so you

may need to permanently or temporarily exclude certain rules.

You can add a rule ID (Example: 4fe151c2-ecf9-4fae-95ae-b88ec9c2fca6) to
./rules/config/exclude_rules.txt in order to ignore any rule that you do not need or cannot be

used.

You can also add a rule ID to ./rules/config/noisy_rules.txt in order to ignore the rule by default

but still be able to use the rule with the -n or --enable-noisy-rules option.

Detection Level Tuning

Hayabusa and Sigma rule authors will determine the risk level of the alert when writing their rules. However,

the actual risk level will differ between environments. You can tune the risk level of the rules by adding them

to ./rules/config/level_tuning.txt and executing hayabusa-1.6.0-win-x64.exe --level-
tuning which will update the level line in the rule file. Please note that the rule file will be updated

directly.

./rules/config/level_tuning.txt sample line:

https://github.com/Yamato-Security/hayabusa-rules/blob/main/tools/sigmac/README.md
https://docs.rs/regex/1.5.4/regex/
https://github.com/SigmaHQ/sigma/wiki/Specification

README.md 9/16/2022

28 / 30

id,new_level
00000000-0000-0000-0000-000000000000,informational # sample level tuning
line

In this case, the risk level of the rule with an id of 00000000-0000-0000-0000-000000000000 in the

rules directory will have its level rewritten to informational.

Event ID Filtering

By default, events are filtered by ID to improve performance by ignorning events that have no detection

rules. The IDs defined in ./rules/config/target_event_IDs.txt will be scanned. If you want to scan

all events, please use the -D, --deep-scan option.

Other Windows Event Log Analyzers and Related
Resources

There is no "one tool to rule them all" and we have found that each has its own merits so we recommend

checking out these other great tools and projects and seeing which ones you like.

APT-Hunter - Attack detection tool written in Python.

Awesome Event IDs - Collection of Event ID resources useful for Digital Forensics and Incident

Response

Chainsaw - Another sigma-based attack detection tool written in Rust.

DeepBlueCLI - Attack detection tool written in Powershell by Eric Conrad.

Epagneul - Graph visualization for Windows event logs.

EventList - Map security baseline event IDs to MITRE ATT&CK by Miriam Wiesner.

Mapping MITRE ATT&CK with Window Event Log IDs - by Michel de CREVOISIER

EvtxECmd - Evtx parser by Eric Zimmerman.

EVTXtract - Recover EVTX log files from unallocated space and memory images.

EvtxToElk - Python tool to send Evtx data to Elastic Stack.

EVTX ATTACK Samples - EVTX attack sample event log files by SBousseaden.

EVTX-to-MITRE-Attack - EVTX attack sample event log files mapped to ATT&CK by Michel de

CREVOISIER

EVTX parser - the Rust evtx library we use written by @OBenamram.

Grafiki - Sysmon and PowerShell log visualizer.

LogonTracer - A graphical interface to visualize logons to detect lateral movement by JPCERTCC.

RustyBlue - Rust port of DeepBlueCLI by Yamato Security.

Sigma - Community based generic SIEM rules.

SOF-ELK - A pre-packaged VM with Elastic Stack to import data for DFIR analysis by Phil Hagen

so-import-evtx - Import evtx files into Security Onion.

SysmonTools - Configuration and off-line log visualization tool for Sysmon.

Timeline Explorer - The best CSV timeline analyzer by Eric Zimmerman.

Windows Event Log Analysis - Analyst Reference - by Forward Defense's Steve Anson.

WELA (Windows Event Log Analyzer) - The swiff-army knife for Windows event logs by Yamato

Security

https://github.com/ahmedkhlief/APT-Hunter
https://github.com/stuhli/awesome-event-ids
https://github.com/countercept/chainsaw
https://github.com/sans-blue-team/DeepBlueCLI
https://twitter.com/eric_conrad
https://github.com/jurelou/epagneul
https://github.com/miriamxyra/EventList/
https://github.com/miriamxyra
https://www.socinvestigation.com/mapping-mitre-attck-with-window-event-log-ids/
https://twitter.com/mdecrevoisier
https://github.com/EricZimmerman/evtx
https://twitter.com/ericrzimmerman
https://github.com/williballenthin/EVTXtract
https://www.dragos.com/blog/industry-news/evtxtoelk-a-python-module-to-load-windows-event-logs-into-elasticsearch/
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES
https://twitter.com/SBousseaden
https://github.com/mdecrevoisier/EVTX-to-MITRE-Attack
https://twitter.com/mdecrevoisier
https://github.com/omerbenamram/evtx
https://twitter.com/obenamram
https://github.com/lucky-luk3/Grafiki
https://github.com/JPCERTCC/LogonTracer
https://twitter.com/jpcert_en
https://github.com/Yamato-Security/RustyBlue
https://github.com/SigmaHQ/sigma
https://github.com/philhagen/sof-elk
https://twitter.com/philhagen
https://docs.securityonion.net/en/2.3/so-import-evtx.html
https://github.com/nshalabi/SysmonTools
https://ericzimmerman.github.io/#!index.md
https://twitter.com/ericrzimmerman
https://www.forwarddefense.com/media/attachments/2021/05/15/windows-event-log-analyst-reference.pdf
https://github.com/Yamato-Security/WELA
https://github.com/Yamato-Security/

README.md 9/16/2022

29 / 30

Zircolite - Sigma-based attack detection tool written in Python.

Windows Logging Recommendations

In order to properly detect malicious activity on Windows machines, you will need to improve the default log

settings. We recommend the following sites for guidance:

JSCU-NL (Joint Sigint Cyber Unit Netherlands) Logging Essentials

ACSC (Australian Cyber Security Centre) Logging and Fowarding Guide

Malware Archaeology Cheat Sheets

Sysmon Related Projects

To create the most forensic evidence and detect with the highest accuracy, you need to install sysmon. We

recommend the following sites and config files:

TrustedSec Sysmon Community Guide

Sysmon Modular

SwiftOnSecurity Sysmon Config

SwiftOnSecurity Sysmon Config fork by Neo23x0

SwiftOnSecurity Sysmon Config fork by ion-storm

Community Documentation

English

2022/06/19 Velociraptor Walkthrough and Hayabusa Integration by Eric Capuano

2022/01/24 Graphing Hayabusa results in neo4j by Matthew Seyer (@forensic_matt)

Japanese

2022/01/22 Visualizing Hayabusa results in Elastic Stack by @kzzzzo2

2021/12/31 Intro to Hayabusa by itiB (@itiB_S144)

2021/12/27 Hayabusa internals by Kazuminn (@k47_um1n)

Contribution

We would love any form of contribution. Pull requests, rule creation and sample evtx logs are the best but

feature requests, notifying us of bugs, etc... are also very welcome.

At the least, if you like our tool then please give us a star on Github and show your support!

Bug Submission

https://github.com/wagga40/Zircolite
https://github.com/JSCU-NL/logging-essentials
https://www.cyber.gov.au/acsc/view-all-content/publications/windows-event-logging-and-forwarding
https://www.malwarearchaeology.com/cheat-sheets
https://github.com/trustedsec/SysmonCommunityGuide
https://github.com/olafhartong/sysmon-modular
https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/Neo23x0/sysmon-config
https://github.com/ion-storm/sysmon-config
https://www.youtube.com/watch?v=Q1IoGX--814
https://twitter.com/eric_capuano
https://www.youtube.com/watch?v=7sQqz2ek-ko
https://twitter.com/forensic_matt
https://qiita.com/kzzzzo2/items/ead8ccc77b7609143749
https://qiita.com/kzzzzo2
https://itib.hatenablog.com/entry/2021/12/31/222946
https://twitter.com/itiB_S144
https://kazuminkun.hatenablog.com/entry/2021/12/27/190535
https://twitter.com/k47_um1n

README.md 9/16/2022

30 / 30

Please submit any bugs you find here. This project is currently actively maintained and we are happy to fix

any bugs reported.

If you find any issues (false positives, bugs, etc...) with Hayabusa rules, please report them to the

hayabusa-rules github issues page here.

If you find any issues (false positives, bugs, etc...) with Sigma rules, please report them to the upstream

SigmaHQ github issues page here.

License

Hayabusa is released under GPLv3 and all rules are released under the Detection Rule License (DRL) 1.1.

Twitter

You can recieve the latest news about Hayabusa, rule updates, other Yamato Security tools, etc... by

following us on Twitter at @SecurityYamato.

https://github.com/Yamato-Security/hayabusa/issues/new?assignees=&labels=bug&template=bug_report.md&title=%5Bbug%5D
https://github.com/Yamato-Security/hayabusa-rules/issues/new
https://github.com/SigmaHQ/sigma/issues
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/SigmaHQ/sigma/blob/master/LICENSE.Detection.Rules.md
https://twitter.com/SecurityYamato

