
README-Japanese.md 9/16/2022

1 / 29

[English] | [⽇本語]

GitHub🦅DownloadsGitHub🦅Downloads 9.2k9.2k GitHub🦅StarsGitHub🦅Stars 728728 latest-versionlatest-version v1.5.1v1.5.1 tag-4 CODE BLUE BlueboxCODE BLUE Bluebox 20222022

rs reportrs report A+A+ Maintenance LevelMaintenance Level Actively DevelopedActively Developed TwitterTwitter

Hayabusa について

Hayabusaは、⽇本のYamato Securityグループによって作られたWindowsイベントログのファストフォレンジック

タイムライン⽣成およびスレットハンティングツールです。 Hayabusaは⽇本語で「ハヤブサ」を意味し、ハヤブサ

が世界で最も速く、狩猟(hunting)に優れ、とても訓練しやすい動物であることから選ばれました。Rust で開発さ

れ、マルチスレッドに対応し、可能な限り⾼速に動作するよう配慮されています。SigmaルールをHayabusaルール

形式に変換するツールも提供しています。Hayabusaの検知ルールもSigmaと同様にYML形式であり、カスタマイズ

性や拡張性に優れます。稼働中のシステムで実⾏してライブ調査することも、複数のシステムからログを収集してオ

フライン調査することも可能です。また、 VelociraptorとHayabusa artifactを⽤いることで企業向けの広範囲なス

レットハンティングとインシデントレスポンスにも活⽤できます。出⼒は⼀つのCSVタイムラインにまとめられ、

Excel、Timeline Explorer、Elastic Stack、Timesketch等で簡単に分析できるようになります。

⽬次

Hayabusa について

⽬次

主な⽬的

スレット(脅威)ハンティングと企業向けの広範囲なDFIR

フォレンジックタイムラインの⾼速⽣成

スクリーンショット

起動画⾯

ターミナル出⼒画⾯

イベント頻度タイムライン出⼒画⾯ (-Vオプション)
結果サマリ画⾯

Excelでの解析

Timeline Explorerでの解析

Criticalアラートのフィルタリングとコンピュータごとのグルーピング

Elastic Stackダッシュボードでの解析

file:///Users/reguser/Documents/YamatoSecurity/hayabusa/README.md
https://github.com/Yamato-Security/hayabusa/releases
https://rust-reportcard.xuri.me/report/github.com/Yamato-Security/hayabusa
https://twitter.com/SecurityYamato
https://yamatosecurity.connpass.com/
https://en.wikipedia.org/wiki/Peregrine_falcon
https://www.rust-lang.org/
https://github.com/SigmaHQ/Sigma
https://github.com/Yamato-Security/hayabusa-rules/tree/main/tools/sigmac
https://docs.velociraptor.app/
https://docs.velociraptor.app/exchange/artifacts/pages/windows.eventlogs.hayabusa/
https://ericzimmerman.github.io/#!index.md
file:///Users/reguser/Documents/YamatoSecurity/hayabusa/doc/ElasticStackImport/ElasticStackImport-Japanese.md
https://timesketch.org/

README-Japanese.md 9/16/2022

2 / 29

Timesketchでの解析

タイムラインのサンプル結果

特徴＆機能

ダウンロード

Gitクローン

アドバンス: ソースコードからのコンパイル（任意）

Rustパッケージの更新

32ビットWindowsバイナリのクロスコンパイル

macOSでのコンパイルの注意点

Linuxでのコンパイルの注意点

LinuxのMUSLバイナリのクロスコンパイル

Linuxでのコンパイルの注意点

Hayabusaの実⾏

注意: アンチウィルス/EDRの誤検知と遅い初回実⾏

Windows

Linux

macOS

使⽤⽅法

主なコマンド

コマンドラインオプション

使⽤例

ピボットキーワードの作成

ログオン情報の要約

サンプルevtxファイルでHayabusaをテストする

Hayabusaの出⼒

プロファイル

1. minimalプロファイルの出⼒
2. standardプロファイルの出⼒
3. verboseプロファイルの出⼒
4. all-field-infoプロファイルの出⼒
5. all-field-info-verboseプロファイルの出⼒
6. super-verboseプロファイルの出⼒
7. timesketchプロファイルの出⼒
8. timesketchプロファイルの出⼒
プロファイルの⽐較

Profile Field Aliases

Levelの省略

MITRE ATT&CK戦術の省略

Channel情報の省略

その他のの省略

プログレスバー

標準出⼒へのカラー設定

結果のサマリ

イベント頻度タイムライン

最多検知⽇の出⼒

最多検知端末名の出⼒

README-Japanese.md 9/16/2022

3 / 29

Hayabusaルール

Hayabusa v.s. 変換されたSigmaルール

検知ルールのチューニング

検知レベルのlevelチューニング

イベントIDフィルタリング

その他のWindowsイベントログ解析ツールおよび関連リソース

Windowsイベントログ設定のススメ

Sysmon関係のプロジェクト

コミュニティによるドキュメンテーション

英語

⽇本語

貢献

バグの報告

ライセンス

Twitter

主な⽬的

スレット(脅威)ハンティングと企業向けの広範囲なDFIR

Hayabusaには現在、2600以上のSigmaルールと130以上のHayabusa検知ルールがあり、定期的にルールが追加さ

れています。 VelociraptorのHayabusa artifactを⽤いることで企業向けの広範囲なスレットハンティングだけでな

くDFIR(デジタルフォレンジックとインシデントレスポンス)にも無料で利⽤することが可能です。この2つのオープ

ンソースを組み合わせることで、SIEMが設定されていない環境でも実質的に遡及してSIEMを再現することができま

す。具体的な⽅法はEric Capuanoのこちらの動画で学ぶことができます。 最終的な⽬標はインシデントレスポンス

や定期的なスレットハンティングのために、HayabusaエージェントをすべてのWindows端末にインストールして、

中央サーバーにアラートを返す仕組みを作ることです。

フォレンジックタイムラインの⾼速⽣成

Windowsのイベントログは、 1）解析が困難なデータ形式であること 2）データの⼤半がノイズであり調査に有⽤で

ないこと から、従来は⾮常に⻑い時間と⼿間がかかる解析作業となっていました。 Hayabusa は、有⽤なデータの

みを抽出し、専⾨的なトレーニングを受けた分析者だけでなく、Windowsのシステム管理者であれば誰でも利⽤でき

る読みやすい形式で提⽰することを主な⽬的としています。 Hayabusaは従来のWindowsイベントログ分析解析と⽐

較して、分析者が20%の時間で80%の作業を⾏えるようにすることを⽬指しています。

スクリーンショット

起動画⾯

https://docs.velociraptor.app/
https://docs.velociraptor.app/exchange/artifacts/pages/windows.eventlogs.hayabusa/
https://twitter.com/eric_capuano
https://www.youtube.com/watch?v=Q1IoGX--814

README-Japanese.md 9/16/2022

4 / 29

ターミナル出⼒画⾯

イベント頻度タイムライン出⼒画⾯ (-Vオプション)

README-Japanese.md 9/16/2022

5 / 29

結果サマリ画⾯

Excelでの解析

README-Japanese.md 9/16/2022

6 / 29

Timeline Explorerでの解析

Criticalアラートのフィルタリングとコンピュータごとのグルーピング

README-Japanese.md 9/16/2022

7 / 29

Elastic Stackダッシュボードでの解析

README-Japanese.md 9/16/2022

8 / 29

Timesketchでの解析

タイムラインのサンプル結果

CSVのタイムライン結果のサンプルはこちらで確認できます。

CSVのタイムラインをExcelやTimeline Explorerで分析する⽅法はこちらで紹介しています。

CSVのタイムラインをElastic Stackにインポートする⽅法はこちらで紹介しています。

https://github.com/Yamato-Security/hayabusa/tree/main/sample-results
file:///Users/reguser/Documents/YamatoSecurity/hayabusa/doc/CSV-AnalysisWithExcelAndTimelineExplorer-Japanese.pdf
file:///Users/reguser/Documents/YamatoSecurity/hayabusa/doc/ElasticStackImport/ElasticStackImport-Japanese.md

README-Japanese.md 9/16/2022

9 / 29

CSVのタイムラインをTimesketchにインポートする⽅法はこちらで紹介しています。

特徴＆機能

クロスプラットフォーム対応: Windows, Linux, macOS。

Rustで開発され、メモリセーフでハヤブサよりも⾼速です！

マルチスレッド対応により、最⼤5倍のスピードアップを実現。

フォレンジック調査やインシデントレスポンスのために、分析しやすいCSVタイムラインを作成します。

読みやすい/作成/編集可能なYMLベースのHayabusaルールで作成されたIoCシグネチャに基づくスレット。

SigmaルールをHayabusaルールに変換するためのSigmaルールのサポートがされています。

現在、他の類似ツールに⽐べ最も多くのSigmaルールをサポートしており、カウントルールにも対応していま

す。

イベントログの統計。(どのような種類のイベントがあるのかを把握し、ログ設定のチューニングに有効で

す。)

不良ルールやノイズの多いルールを除外するルールチューニング設定が可能です。

MITRE ATT&CKとのマッピング (CSVの出⼒ファイルのみ)。

ルールレベルのチューニング。

イベントログから不審なユーザやファイルを素早く特定するためのピボットキーワードの⼀覧作成。

詳細な調査のために全フィールド情報の出⼒。

成功と失敗したユーザログオンの要約。

Velociraptorと組み合わせた企業向けの広範囲なすべてのエンドポイントに対するスレットハンティングと

DFIR。

CSV、JSON、JSONLの出⼒。

ダウンロード

ReleasesページからHayabusaの安定したバージョンでコンパイルされたバイナリが含まれている最新版もしくはソ

ースコードをダウンロードできます。

Gitクローン

以下のgit cloneコマンドでレポジトリをダウンロードし、ソースコードからコンパイルして使⽤することも可能
です：

git clone https://github.com/Yamato-Security/hayabusa.git --recursive

注意： mainブランチは開発中のバージョンです。まだ正式にリリースされていない新機能が使えるかもしれない

が、バグがある可能性もあるので、テスト版だと思って下さい。

※ --recursiveをつけ忘れた場合、サブモジュールとして管理されているrulesフォルダ内のファイルはダウンロ
ードされません。

git pull --recurse-submodulesコマンド、もしくは以下のコマンドでrulesフォルダを同期し、
Hayabusaの最新のルールを更新することができます:

file:///Users/reguser/Documents/YamatoSecurity/hayabusa/doc/TimesketchImport/TimesketchImport-Japanese.md
https://docs.velociraptor.app/
https://github.com/Yamato-Security/hayabusa/releases

README-Japanese.md 9/16/2022

10 / 29

hayabusa-1.6.0-win-x64.exe -u

アップデートが失敗した場合は、rulesフォルダの名前を変更してから、もう⼀回アップデートしてみて下さい。

注意: アップデートを実⾏する際に rules フォルダは hayabusa-rules レポジトリの最新のルールと

コンフィグファイルに置き換えられます 既存ファイルへの修正はすべて上書きされますので、アップ

デート実⾏前に編集したファイルのバックアップをおすすめします。 もし、--level-tuning を⾏

っているのであれば、アップデート後にルールファイルの再調整をしてください rulesフォルダ内に
新しく追加したルールは、アップデート時に上書きもしくは削除は⾏われません。

アドバンス: ソースコードからのコンパイル（任意）

Rustがインストールされている場合、以下のコマンドでソースコードからコンパイルすることができます:

cargo build --release

以下のコマンドで定期的にRustをアップデートしてください：

rustup update stable

コンパイルされたバイナリはtarget/releaseフォルダ配下で作成されます。

Rustパッケージの更新

コンパイル前に最新のRust crateにアップデートすることで、最新のライブラリを利⽤することができます:

cargo update

※ アップデート後、何か不具合がありましたらお知らせください。

32ビットWindowsバイナリのクロスコンパイル

以下のコマンドで64ビットのWindows端末で32ビットのバイナリをクロスコンパイルできます:

rustup install stable-i686-pc-windows-msvc
rustup target add i686-pc-windows-msvc
rustup run stable-i686-pc-windows-msvc cargo build --release

macOSでのコンパイルの注意点

https://github.com/Yamato-Security/hayabusa-rules

README-Japanese.md 9/16/2022

11 / 29

opensslについてのコンパイルエラーが表⽰される場合は、Homebrewをインストールしてから、以下のパッケージ

をインストールする必要があります：

brew install pkg-config
brew install openssl

Linuxでのコンパイルの注意点

opensslについてのコンパイルエラーが表⽰される場合は、以下のパッケージをインストールする必要があります。

Ubuntu系のディストロ:

sudo apt install libssl-dev

Fedora系のディストロ:

sudo yum install openssl-devel

LinuxのMUSLバイナリのクロスコンパイル

まず、Linux OSでターゲットをインストールします。

rustup install stable-x86_64-unknown-linux-musl
rustup target add x86_64-unknown-linux-musl

以下のようにコンパイルします:

cargo build --release --target=x86_64-unknown-linux-musl

MUSLバイナリは./target/x86_64-unknown-linux-musl/release/ディレクトリ配下に作成されます。
MUSLバイナリはGNUバイナリより約15％遅いです。

Linuxでのコンパイルの注意点

Hayabusaの実⾏

注意: アンチウィルス/EDRの誤検知と遅い初回実⾏

Hayabusa実⾏する際や、.ymlルールのダウンロードや実⾏時にルール内でdetectionに不審なPowerShellコマンド

やmimikatzのようなキーワードが書かれている際に、アンチウィルスやEDRにブロックされる可能性があります。

https://brew.sh/

README-Japanese.md 9/16/2022

12 / 29

誤検知のため、セキュリティ対策の製品がHayabusaを許可するように設定する必要があります。 マルウェア感染が

⼼配であれば、ソースコードを確認した上で、⾃分でバイナリをコンパイルして下さい。

Windows PC起動後の初回実⾏時に時間がかかる場合があります。これはWindows Defenderのリアルタイムスキャ

ンが⾏われていることが原因です。リアルタイムスキャンを無効にするかHayabusaのディレクトリをアンチウィル

ススキャンから除外することでこの現象は解消しますが、設定を変える前にセキュリティリスクを⼗分ご考慮くださ

い。

Windows

コマンドプロンプトやWindows Terminalから32ビットもしくは64ビットのWindowsバイナリをHayabusaのルー

トディレクトリから実⾏します。

例: hayabusa-1.6.0-windows-x64.exe

Linux

まず、バイナリに実⾏権限を与える必要があります。

chmod +x ./hayabusa-1.6.0-linux-x64-gnu

次に、Hayabusaのルートディレクトリから実⾏します：

./hayabusa-1.6.0-linux-x64-gnu

macOS

まず、ターミナルやiTerm2からバイナリに実⾏権限を与える必要があります。

chmod +x ./hayabusa-1.6.0-mac-intel

次に、Hayabusaのルートディレクトリから実⾏してみてください：

./hayabusa-1.6.0-mac-intel

macOSの最新版では、以下のセキュリティ警告が出る可能性があります：

README-Japanese.md 9/16/2022

13 / 29

macOSの環境設定から「セキュリティとプライバシー」を開き、「⼀般」タブから「このまま許可」ボタンをクリッ

クしてください。

README-Japanese.md 9/16/2022

14 / 29

その後、ターミナルからもう⼀回実⾏してみてください：

./hayabusa-1.6.0-mac-intel

以下の警告が出るので、「開く」をクリックしてください。

これで実⾏できるようになります。

使⽤⽅法

主なコマンド

デフォルト: ファストフォレンジックタイムラインの作成。

--level-tuning: アラートlevelのカスタムチューニング
-L, --logon-summary: ログオンイベントのサマリを出⼒する。
-P, --pivot-keywords-list: ピボットする不審なキーワードのリスト作成。
-s, --statistics: イベントIDに基づくイベントの合計と割合の集計を出⼒する。

--set-default-profile: デフォルトプロファイルを変更する。
-u, --update: GitHubのhayabusa-rulesリポジトリにある最新のルールに同期させる。

https://github.com/Yamato-Security/hayabusa-rules

README-Japanese.md 9/16/2022

15 / 29

コマンドラインオプション

USAGE:
 hayabusa.exe <INPUT> [OTHER-ACTIONS] [OPTIONS]

INPUT:
 -d, --directory <DIRECTORY> .evtxファイルを持つディレクトリのパス
 -f, --file <FILE> 1つの.evtxファイルに対して解析を⾏う
 -l, --live-analysis ローカル端末の
C:\Windows\System32\winevt\Logsフォルダを解析する

ADVANCED:
 -c, --rules-config <DIRECTORY> ルールフォルダのコンフィグディレ
クトリ (デフォルト: ./rules/config)
 -Q, --quiet-errors Quiet errorsモード: エラーロ
グを保存しない
 -r, --rules <DIRECTORY/FILE> ルールファイルまたはルールファイ
ルを持つディレクトリ (デフォルト: ./rules)
 -t, --thread-number <NUMBER> スレッド数 (デフォルト: パフォ
ーマンスに最適な数値)
 --target-file-ext <EVTX_FILE_EXT>... evtx以外の拡張⼦を解析対象に追
加する。 (例１: evtx_data 例２：evtx1 evtx2)

OUTPUT:
 -j, --json タイムラインの出⼒をJSON形式で保存す
る（例: -j -o results.json）
 -J, --jsonl タイムラインの出⼒をJSONL形式で保存す
る (例: -J -o results.jsonl)
 -o, --output <FILE> タイムラインをCSV形式で保存する (例:
results.csv)
 -P, --profile <PROFILE> 利⽤する出⼒プロファイル名を指定する
(minimal, standard, verbose, verbose-all-field-info, verbose-details-and-
all-field-info)

DISPLAY-SETTINGS:
 --no-color カラー出⼒を無効にする
 --no-summary 結果概要を出⼒しない
 -q, --quiet Quietモード: 起動バナーを表⽰しない
 -v, --verbose 詳細な情報を出⼒する
 -V, --visualize-timeline イベント頻度タイムラインを出⼒する

FILTERING:
 -D, --deep-scan すべてのイベントIDを対象にしたスキャンを
⾏う（遅くなる）
 --enable-deprecated-rules Deprecatedルールを有効にする
 --exclude-status <STATUS>... 読み込み対象外とするルール内でのステータス
(ex: experimental) (ex: stable test)
 -m, --min-level <LEVEL> 結果出⼒をするルールの最低レベル (デフォ
ルト: informational)
 -n, --enable-noisy-rules Noisyルールを有効にする
 --timeline-end <DATE> 解析対象とするイベントログの終了時刻 (例:
"2022-02-22 23:59:59 +09:00")

README-Japanese.md 9/16/2022

16 / 29

 --timeline-start <DATE> 解析対象とするイベントログの開始時刻 (例:
"2020-02-22 00:00:00 +09:00")

OTHER-ACTIONS:
 --contributors コントリビュータの⼀覧表⽰
 -L, --logon-summary 成功と失敗したログオン情報の要約
を出⼒する
 --level-tuning [<FILE>] ルールlevelのチューニング (デフ
ォルト: ./rules/config/level_tuning.txt)
 -p, --pivot-keywords-list ピボットキーワードの⼀覧作成
 -s, --statistics イベントIDの統計情報を表⽰する
 --set-default-profile <PROFILE> デフォルトの出⼒コンフィグを設定
する
 -u, --update-rules rulesフォルダをhayabusa-
rulesのgithubリポジトリの最新版に更新する

TIME-FORMAT:
 --European-time ヨーロッパ形式で⽇付と時刻を出⼒する (例: 22-02-
2022 22:00:00.123 +02:00)
 --RFC-2822 RFC 2822形式で⽇付と時刻を出⼒する (例: Fri, 22
Feb 2022 22:00:00 -0600)
 --RFC-3339 RFC 3339形式で⽇付と時刻を出⼒する (例: 2022-02-
22 22:00:00.123456-06:00)
 --US-military-time 24時間制(ミリタリータイム)のアメリカ形式で⽇付と時刻
を出⼒する (例: 02-22-2022 22:00:00.123 -06:00)
 --US-time アメリカ形式で⽇付と時刻を出⼒する (例: 02-22-2022
10:00:00.123 PM -06:00)
 -U, --UTC UTC形式で⽇付と時刻を出⼒する (デフォルト: 現地時間)

使⽤例

１つのWindowsイベントログファイルに対してHayabusaを実⾏する:

hayabusa-1.6.0-win-x64.exe -f eventlog.evtx

verboseプロファイルで複数のWindowsイベントログファイルのあるsample-evtxディレクトリに対して、
Hayabusaを実⾏する:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -P verbose

全てのフィールド情報も含めて１つのCSVファイルにエクスポートして、Excel、Timeline Explorer、Elastic

Stack等でさらに分析することができる(注意: verbose-details-and-all-field-infoプロファイル
を使すると、出⼒するファイルのサイズがとても⼤きくなる！):

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -o results.csv -P
verbose-details-and-all-field-info

README-Japanese.md 9/16/2022

17 / 29

タイムラインをJSON形式で保存する:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -o results.json -j

Hayabusaルールのみを実⾏する（デフォルトでは-r .\rulesにあるすべてのルールが利⽤される）:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r .\rules\hayabusa -
o results.csv

Windowsでデフォルトで有効になっているログに対してのみ、Hayabusaルールを実⾏する:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r
.\rules\hayabusa\default -o results.csv

Sysmonログに対してのみHayabusaルールを実⾏する:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r
.\rules\hayabusa\sysmon -o results.csv

Sigmaルールのみを実⾏する:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r .\rules\sigma -o
results.csv

廃棄(deprecated)されたルール(statusがdeprecatedになっているルール)とノイジールール
(.\rules\config\noisy_rules.txtにルールIDが書かれているルール)を有効にする:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx --enable-deprecated-
rules --enable-noisy-rules -o results.csv

ログオン情報を分析するルールのみを実⾏し、UTCタイムゾーンで出⼒する:

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -r
.\rules\hayabusa\default\events\Security\Logons -U -o results.csv

起動中のWindows端末上で実⾏し（Administrator権限が必要）、アラート（悪意のある可能性のある動作）

のみを検知する:

README-Japanese.md 9/16/2022

18 / 29

hayabusa-1.6.0-win-x64.exe -l -m low

criticalレベルのアラートからピボットキーワードの⼀覧を作成する(結果は結果毎にkeywords-Ip
Address.txtやkeywords-Users.txt等に出⼒される):

hayabusa-1.6.0-win-x64.exe -l -m critical -p -o keywords

イベントIDの統計情報を出⼒する:

hayabusa-1.6.0-win-x64.exe -f Security.evtx -s

ログオンサマリを出⼒する:

hayabusa-1.6.0-win-x64.exe -L -f Security.evtx -s

詳細なメッセージを出⼒する(処理に時間がかかるファイル、パースエラー等を特定するのに便利):

hayabusa-1.6.0-win-x64.exe -d .\hayabusa-sample-evtx -v

Verbose出⼒の例:

Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1027.004_Obfuscated Files or Information\u{a0}Compile
After Delivery/sysmon.evtx"
1 / 509 [>--
--
-] 0.20 % 1s
Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1558.004_Steal or Forge Kerberos Tickets AS-REP
Roasting/Security.evtx"
2 / 509 [>--
--
-] 0.39 % 1s
Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1558.003_Steal or Forge Kerberos
Tickets\u{a0}Kerberoasting/Security.evtx"
3 / 509 [>--
--
-] 0.59 % 1s
Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1197_BITS Jobs/Windows-BitsClient.evtx"

README-Japanese.md 9/16/2022

19 / 29

4 / 509 [=>---
--
-] 0.79 % 1s
Checking target evtx FilePath: "./hayabusa-sample-
evtx/YamatoSecurity/T1218.004_Signed Binary Proxy
Execution\u{a0}InstallUtil/sysmon.evtx"
5 / 509 [=>---
--
-] 0.98 % 1s

結果をTimesketchにインポートできるCSV形式に保存する:

hayabusa-1.6.0-win-x64.exe -d ../hayabusa-sample-evtx --RFC-3339 -o
timesketch-import.csv -P timesketch -U

エラーログの出⼒をさせないようにする: デフォルトでは、Hayabusaはエラーメッセージをエラーログに保存

します。 エラーメッセージを保存したくない場合は、-Qを追加してください。

ピボットキーワードの作成

-pもしくは--pivot-keywords-listオプションを使うことで不審なユーザやホスト名、プロセスなどを⼀覧で
出⼒することができ、イベントログから素早く特定することができます。 ピボットキーワードのカスタマイズ

は./config/pivot_keywords.txtを変更することで⾏うことができます。以下はデフォルトの設定になりま
す:

Users.SubjectUserName
Users.TargetUserName
Users.User
Logon IDs.SubjectLogonId
Logon IDs.TargetLogonId
Workstation Names.WorkstationName
Ip Addresses.IpAddress
Processes.Image

形式はKeywordName.FieldNameとなっています。例えばデフォルトの設定では、Usersというリストは検知し
たイベントからSubjectUserName、 TargetUserName 、 Userのフィールドの値が⼀覧として出⼒されます。
hayabusaのデフォルトでは検知したすべてのイベントから結果を出⼒するため、--pivot-keyword-listオプ
ションを使うときには -m もしくは --min-level オプションを併せて使って検知するイベントのレベルを指定する

ことをおすすめします。まず-m criticalを指定して、最も⾼いcriticalレベルのアラートのみを対象として、
レベルを必要に応じて下げていくとよいでしょう。結果に正常なイベントにもある共通のキーワードが⼊っている可

能性が⾼いため、⼿動で結果を確認してから、不審なイベントにありそうなキーワードリストを１つのファイルに保

存し、grep -f keywords.txt timeline.csv等のコマンドで不審なアクティビティに絞ったタイムラインを
作成することができます。

ログオン情報の要約

https://timesketch.org/

README-Japanese.md 9/16/2022

20 / 29

-L または --logon-summary オプションを使うことでログオン情報の要約(ユーザ名、ログイン成功数、ログイン

失敗数)の画⾯出⼒ができます。単体のevtxファイルを解析したい場合は-fオプションを利⽤してください。複数の
evtxファイルを対象としたい場合は -d オプションを合わせて使うことでevtxファイルごとのログイン情報の要約を

出⼒できます。

サンプルevtxファイルでHayabusaをテストする

Hayabusaをテストしたり、新しいルールを作成したりするためのサンプルevtxファイルをいくつか提供しています:

https://github.com/Yamato-Security/Hayabusa-sample-evtx

以下のコマンドで、サンプルのevtxファイルを新しいサブディレクトリ hayabusa-sample-evtx にダウンロー

ドすることができます:

git clone https://github.com/Yamato-Security/hayabusa-sample-evtx.git

Hayabusaの出⼒

プロファイル

Hayabusaのconfig/profiles.yaml設定ファイルでは、５つのプロファイルが定義されています:

�. minimal
�. standard (デフォルト)

�. verbose
�. all-field-info
�. all-field-info-verbose
�. super-verbose
�. timesketch-minimal
�. timesketch-verbose

このファイルを編集することで、簡単に独⾃のプロファイルをカスタマイズしたり、追加したりすることができま

す。 --set-default-profile <profile>オプションでデフォルトのプロファイルを変更することもできま
す。

1. minimalプロファイルの出⼒

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %RuleTitle%, %Details%

2. standardプロファイルの出⼒

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %RecordID%, %RuleTitle%,
%Details%

3. verboseプロファイルの出⼒

https://github.com/Yamato-Security/Hayabusa-sample-evtx

README-Japanese.md 9/16/2022

21 / 29

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %MitreTactics, %MitreTags%,
%OtherTags%, %RecordID%, %RuleTitle%, %Details%, %RuleFile%, %EvtxFile%

4. all-field-infoプロファイルの出⼒

最⼩限のdetails情報を出⼒する代わりに、イベントにあるすべてのEventDataフィールド情報が出⼒されます。

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %RecordID%, %RuleTitle%,
%AllFieldInfo%, %RuleFile%, %EvtxFile%

5. all-field-info-verboseプロファイルの出⼒

all-field-infoとタグ情報が出⼒されます。

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %MitreTactics, %MitreTags%,
%OtherTags%, %RecordID%, %RuleTitle%, %AllFieldInfo%, %RuleFile%, %EvtxFile%

6. super-verboseプロファイルの出⼒

verboseプロファイルで出⼒される情報とイベントにあるすべてのEventDataフィールド情報が出⼒されます。
(注意: 出⼒ファイルサイズは2倍になります！)

%Timestamp%, %Computer%, %Channel%, %EventID%, %Level%, %MitreTactics, %MitreTags%,
%OtherTags%, %RecordID%, %RuleTitle%, %Details%, %RuleFile%, %EvtxFile%, %AllFieldInfo%

7. timesketchプロファイルの出⼒

Timesketchにインポートできるverboseプロファイル。

%Timestamp%, hayabusa, %RuleTitle%, %Computer%, %Channel%, %EventID%, %Level%,
%MitreTactics, %MitreTags%, %OtherTags%, %RecordID%, %Details%, %RuleFile%, %EvtxFile%

8. timesketchプロファイルの出⼒

Timesketchにインポートできるverboseプロファイル。

%Timestamp%, hayabusa, %RuleTitle%, %Computer%, %Channel%, %EventID%, %Level%,
%MitreTactics, %MitreTags%, %OtherTags%, %RecordID%, %Details%, %RuleFile%, %EvtxFile%,
%AllFieldInfo%

プロファイルの⽐較

以下のベンチマークは、2018年製のマックブックプロ上で7.5GBのEVTXデータに対して実施されました。

プロファイル 処理時間 結果のファイルサイズ

minimal 16分18秒 690 MB

standard 16分23秒 710 MB

verbose 17分 990 MB

timesketch-minimal 17分 1015 MB

https://timesketch.org/
https://timesketch.org/

README-Japanese.md 9/16/2022

22 / 29

プロファイル 処理時間 結果のファイルサイズ

all-field-info-verbose 16分50秒 1.6 GB

super-verbose 17分12秒 2.1 GB

Profile Field Aliases

エイリアス名 Hayabusaの出⼒情報

%Timestamp%

デフォルトではYYYY-MM-DD HH:mm:ss.sss +hh:mm形式になっている。イベントログ
の<Event><System><TimeCreated SystemTime>フィールドから来ている。デフォ
ルトのタイムゾーンはローカルのタイムゾーンになるが、--UTCオプションでUTCに変更す

ることができる。

%Computer% イベントログの<Event><System><Computer>フィールド。

%Channel% ログ名。イベントログの<Event><System><EventID>フィールド。

%EventID% イベントログの<Event><System><EventID>フィールド。

%Level%
YML検知ルールのlevelフィールド。(例：informational、low、medium、high、
critical)

%MitreTactics% MITRE ATT&CKの戦術 (例: Initial Access、Lateral Movement等々）

%MitreTags%
MITRE ATT&CKの戦術以外の情報。attack.g(グループ)、attack.t(技術)、attack.s(ソフト

ウェア)の情報を出⼒する。

%OtherTags%
YML検知ルールのtagsフィールドからMitreTactics、MitreTags以外のキーワードを
出⼒する。

%RecordID% <Event><System><EventRecordID>フィールドのイベントレコードID。

%RuleTitle% YML検知ルールのtitleフィールド。

%Details%

YML検知ルールのdetailsフィールドから来ていますが、このフィールドはHayabusaルー

ルにしかありません。このフィールドはアラートとイベントに関する追加情報を提供し、ロ

グのフィールドから有⽤なデータを抽出することができます。イベントキーのマッピングが

間違っている場合、もしくはフィールドが存在しない場合で抽出ができなかった箇所はn/a
(not available)と記載されます。YML検知ルールにdetailsフィールドが存在しない時の
detailsのメッセージを./rules/config/default_details.txtで設定できます。
default_details.txtではProvider Name、EventID、detailsの組み合わせで
設定することができます。default_details.txt`やYML検知ルールに対応するルールが記載さ

れていない場合はすべてのフィールド情報を出⼒します。

%AllFieldInfo% すべてのフィールド情報。

%RuleFile% アラートまたはイベントを⽣成した検知ルールのファイル名。

%EvtxFile% アラートまたはイベントを起こしたevtxファイルへのパス。

これらのエイリアスは、出⼒プロファイルで使⽤することができます。また、他のイベントキーアライズを定義し、

他のフィールドを出⼒することもできます。

https://attack.mitre.org/tactics/enterprise/
https://github.com/Yamato-Security/hayabusa-rules/blob/main/README-Japanese.md#%E3%82%A4%E3%83%99%E3%83%B3%E3%83%88%E3%82%AD%E3%83%BC%E3%82%A8%E3%82%A4%E3%83%AA%E3%82%A2%E3%82%B9

README-Japanese.md 9/16/2022

23 / 29

Levelの省略

簡潔に出⼒するためにLevelを以下のように省略し出⼒しています。

crit: critical
high: high
med : med
low : low
info: informational

MITRE ATT&CK戦術の省略

簡潔に出⼒するためにMITRE ATT&CKの戦術を以下のように省略しています。 ./config/output_tag.txtの
設定ファイルで⾃由に編集できます。 検知したデータの戦術を全て出⼒したい場合は、--all-tagsオプションを
つけてください。

Recon : Reconnaissance (偵察)

ResDev : Resource Development (リソース開発)

InitAccess : Initial Access (初期アクセス)

Exec : Execution (実⾏)

Persis : Persistence (永続化)

PrivEsc : Privilege Escalation (権限昇格)

Evas : Defense Evasion (防御回避)

CredAccess : Credential Access (認証情報アクセス)

Disc : Discovery (探索)

LatMov : Lateral Movement (横展開)

Collect : Collection (収集)

C2 : Command and Control (遠隔操作)

Exfil : Exfiltration (持ち出し)

Impact : Impact (影響)

Channel情報の省略

簡潔に出⼒するためにChannelの表⽰を以下のように省略しています。

./rules/config/channel_abbreviations.txtの設定ファイルで⾃由に編集できます。

App : Application
AppLocker : Microsoft-Windows-AppLocker/*
BitsCli : Microsoft-Windows-Bits-Client/Operational
CodeInteg : Microsoft-Windows-CodeIntegrity/Operational
Defender : Microsoft-Windows-Windows Defender/Operational
DHCP-Svr : Microsoft-Windows-DHCP-Server/Operational
DNS-Svr : DNS Server
DvrFmwk : Microsoft-Windows-DriverFrameworks-UserMode/Operational
Exchange : MSExchange Management
Firewall : Microsoft-Windows-Windows Firewall With Advanced Security/Firewall
KeyMgtSvc : Key Management Service
LDAP-Cli : Microsoft-Windows-LDAP-Client/Debug

README-Japanese.md 9/16/2022

24 / 29

NTLM Microsoft-Windows-NTLM/Operational
OpenSSH : OpenSSH/Operational
PrintAdm : Microsoft-Windows-PrintService/Admin
PrintOp : Microsoft-Windows-PrintService/Operational
PwSh : Microsoft-Windows-PowerShell/Operational
PwShClassic : Windows PowerShell
RDP-Client : Microsoft-Windows-TerminalServices-RDPClient/Operational
Sec : Security
SecMitig : Microsoft-Windows-Security-Mitigations/*
SmbCliSec : Microsoft-Windows-SmbClient/Security
SvcBusCli : Microsoft-ServiceBus-Client
Sys : System
Sysmon : Microsoft-Windows-Sysmon/Operational
TaskSch : Microsoft-Windows-TaskScheduler/Operational
WinRM : Microsoft-Windows-WinRM/Operational
WMI : Microsoft-Windows-WMI-Activity/Operational

その他のの省略

できるだけ簡潔にするために、以下の略語を使⽤しています:

Acct -> Account

Addr -> Address

Auth -> Authentication

Cli -> Client

Cmd -> Command

Comp -> Computer

Conn -> Connection

Dir -> Directory

Dst -> Destination

Exec -> Execution

Grp -> Group

LID -> Logon ID

Net -> Network

Obj -> Object

Proto -> Protocol

Sig -> Signature

Susp -> Suspicious

Src -> Source

Svc -> Service

Svr -> Server

Tgt -> Target

Op -> Operation

Pkg -> Package

Priv -> Privilege

Proc -> Process

README-Japanese.md 9/16/2022

25 / 29

PID -> Process ID

PGUID -> Process GUID (Global Unique ID)

Ver -> Version

プログレスバー

プログレス・バーは、複数のevtxファイルに対してのみ機能します。 解析したevtxファイルの数と割合をリアルタイ

ムで表⽰します。

標準出⼒へのカラー設定

Hayabusaの結果はlevel毎に⽂字⾊が変わります。 ./config/level_color.txtの値を変更することで⽂字
⾊を変えることができます。 形式はlevel名,(6桁のRGBのカラーhex)です。 カラー出⼒をしないようにしたい

場合は--no-colorオプションをご利⽤ください。

結果のサマリ

イベント頻度タイムライン

-Vまたは--visualize-timelineオプションを使うことで、検知したイベントの数が5以上の時、頻度のタイム
ライン(スパークライン)を画⾯に出⼒します。 マーカーの数は最⼤10個です。デフォルトのCommand Promptと

PowerShell Promptでは⽂字化けがでるので、Windows TerminalやiTerm2等のターミナルをご利⽤ください。

最多検知⽇の出⼒

各レベルで最も検知された⽇付を画⾯に出⼒します。

最多検知端末名の出⼒

各レベルで多く検知されたユニークなイベントが多い端末名上位5つを画⾯に出⼒します。

Hayabusaルール

Hayabusa検知ルールはSigmaのようなYML形式で記述されています。rulesディレクトリに⼊っていますが、将来
的にはhttps://github.com/Yamato-Security/hayabusa-rulesのレポジトリで管理する予定なので、ルールのissue

とpull requestはhayabusaのレポジトリではなく、ルールレポジトリへお願いします。

ルールの作成⽅法については、hayabusa-rulesレポジトリのREADME をお読みください。

hayabusa-rulesレポジトリにあるすべてのルールは、rulesフォルダに配置する必要があります。

levelがinformationのルールは events とみなされ、low 以上は alerts とみなされます。

Hayabusaルールのディレクトリ構造は、3つのディレクトリに分かれています。

default: Windows OSでデフォルトで記録されるログ

non-default: グループポリシーやセキュリティベースラインの適⽤でオンにする必要があるログ
sysmon: sysmonによって⽣成されるログ。
testing: 現在テストしているルールを配置するための⼀時ディレクトリ

https://github.com/Yamato-Security/hayabusa-rules
https://github.com/Yamato-Security/hayabusa-rules/blob/main/README-Japanese.md
https://github.com/Yamato-Security/hayabusa-rules
https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

README-Japanese.md 9/16/2022

26 / 29

ルールはさらにログタイプ（例：Security、Systemなど）によってディレクトリに分けられ、次の形式で名前が付

けられます。

アラート形式: <イベントID>_<イベントの説明>_<リスクの説明>.yml
アラート例: 1102_SecurityLogCleared_PossibleAntiForensics.yml
イベント形式: <イベントID>_<イベントの説明>.yml
イベント例: 4776_NTLM-LogonToLocalAccount.yml

現在のルールをご確認いただき、新規作成時のテンプレートとして、また検知ロジックの確認⽤としてご利⽤くださ

い。

Hayabusa v.s. 変換されたSigmaルール

Sigmaルールは、最初にHayabusaルール形式に変換する必要があります。変換のやり⽅はここで説明されていま

す。 殆どのルールはSigmaルールと互換性があるので、Sigmaルールのようにその他のSIEM形式に変換できます。

Hayabusaルールは、Windowsのイベントログ解析専⽤に設計されており、以下のような利点があります:

�. ログの有⽤なフィールドのみから抽出された追加情報を表⽰するための detailsフィールドを追加していま
す。

�. Hayabusaルールはすべてサンプルログに対してテストされ、検知することが確認されています。

変換処理のバグ、サポートされていない機能、実装の違い(正規表現など)により、⼀部のSigmaルール

は意図したとおりに動作しない可能性があります。

�. Sigmaルール仕様にない集計式(例：|equalsfield)の利⽤。

制限事項: 私たちの知る限り、Hayabusa はオープンソースの Windows イベントログ解析ツールの中でSigmaルー

ルを最も多くサポートしていますが、まだサポートされていないルールもあります。

�. Rust正規表現クレートでは機能しない正規表現を使⽤するルール。

�. Sigmaルール仕様のcount以外の集計式。
�. |nearを使⽤するルール。

検知ルールのチューニング

ファイアウォールやIDSと同様に、シグネチャベースのツールは、環境に合わせて調整が必要になるため、特定のル

ールを永続的または⼀時的に除外する必要がある場合があります。

ルールID(例: 4fe151c2-ecf9-4fae-95ae-b88ec9c2fca6) を ./rules/config/exclude_rules.txt
に追加すると、不要なルールや利⽤できないルールを無視することができます。

ルールIDを ./rules/config/noisy_rules.txtに追加して、デフォルトでルールを無視することもできます
が、-nまたは --enable-noisy-rulesオプションを指定してルールを使⽤することもできます。

検知レベルのlevelチューニング

Hayabusaルール、Sigmaルールはそれぞれの作者が検知した際のリスクレベルを決めています。 ユーザが独⾃のリ

スクレベルに設定するには./rules/config/level_tuning.txtに変換情報を書き、hayabusa-1.6.0-
win-x64.exe --level-tuningを実⾏することでルールファイルが書き換えられます。 ルールファイルが直接

書き換えられることに注意して使⽤してください。

https://github.com/Yamato-Security/hayabusa-rules/tree/main/tools/sigmac/README-Japanese.md
https://docs.rs/regex/1.5.4/regex/
https://github.com/SigmaHQ/Sigma/wiki/Specification

README-Japanese.md 9/16/2022

27 / 29

./rules/config/level_tuning.txtの例:

id,new_level
00000000-0000-0000-0000-000000000000,informational # sample level tuning
line

ルールディレクトリ内でidが00000000-0000-0000-0000-000000000000のルールのリスクレベルが
informationalに書き換えられます。

イベントIDフィルタリング

デフォルトではパフォーマンスを上げるために、検知ルールでイベントIDが定義されていないイベントを無視してい

ます。 ./rules/config/target_event_IDs.txtで定義されたIDがスキャンされます。 すべてのイベントを

スキャンしたい場合は、-D, --deep-scanオプションを使⽤してください。

その他のWindowsイベントログ解析ツールおよび関連リ
ソース

「すべてを統治する1つのツール」というものはなく、それぞれにメリットがあるため、これらの他の優れたツールや

プロジェクトをチェックして、どれが気に⼊ったかを確認することをお勧めします。

APT-Hunter - Pythonで開発された攻撃検知ツール。

Awesome Event IDs - フォレンジック調査とインシデント対応に役⽴つイベントIDのリソース。

Chainsaw - Rustで開発されたSigmaベースの攻撃検知ツール。

DeepBlueCLI - Eric Conrad によってPowershellで開発された攻撃検知ツール。

Epagneul - Windowsイベントログの可視化ツール。

EventList - Miriam Wiesnerによるセキュリティベースラインの有効なイベントIDをMITRE ATT&CKにマッ

ピングするPowerShellツール。

MITRE ATT&CKとWindowイベントログIDのマッピング - 作者：Michel de CREVOISIER

EvtxECmd - Eric ZimmermanによるEvtxパーサー。

EVTXtract - 未使⽤領域やメモリダンプからEVTXファイルを復元するツール。

EvtxToElk - Elastic StackにEvtxデータを送信するPythonツール。

EVTX ATTACK Samples - SBousseaden によるEVTX攻撃サンプルイベントログファイル。

EVTX-to-MITRE-Attack - Michel de CREVOISIERによるATT&CKにマッピングされたEVTX攻撃サンプルロ

グのレポジトリ。

EVTX parser - @OBenamram によって書かれた、Hayabusaが使⽤しているRustライブラリ。

Grafiki - SysmonとPowerShellログの可視化ツール。

LogonTracer - JPCERTCC による、横⽅向の動きを検知するためにログオンを視覚化するグラフィカルなイ

ンターフェース。

RustyBlue - ⼤和セキュリティによるDeepBlueCLIのRust版。

Sigma - コミュニティベースの汎⽤SIEMルール。

SOF-ELK - Phil Hagen によるDFIR解析⽤のElastic Stack VM。

so-import-evtx - evtxファイルをSecurityOnionにインポートするツール。

SysmonTools - Sysmonの設定とオフライン可視化ツール。

Timeline Explorer - Eric Zimmerman による最⾼のCSVタイムラインアナライザ。

https://github.com/ahmedkhlief/APT-Hunter
https://github.com/stuhli/awesome-event-ids
https://github.com/countercept/chainsaw
https://github.com/sans-blue-team/DeepBlueCLI
https://twitter.com/eric_conrad
https://github.com/jurelou/epagneul
https://github.com/miriamxyra/EventList/
https://github.com/miriamxyra
https://www.socinvestigation.com/mapping-mitre-attck-with-window-event-log-ids/
https://twitter.com/mdecrevoisier
https://github.com/EricZimmerman/evtx
https://twitter.com/ericrzimmerman
https://github.com/williballenthin/EVTXtract
https://www.dragos.com/blog/industry-news/evtxtoelk-a-python-module-to-load-windows-event-logs-into-elasticsearch/
https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES
https://twitter.com/SBousseaden
https://github.com/mdecrevoisier/EVTX-to-MITRE-Attack
https://twitter.com/mdecrevoisier
https://github.com/omerbenamram/evtx
https://twitter.com/obenamram
https://github.com/lucky-luk3/Grafiki
https://github.com/JPCERTCC/LogonTracer
https://twitter.com/jpcert
https://github.com/Yamato-Security/RustyBlue
https://github.com/SigmaHQ/Sigma
https://github.com/philhagen/sof-elk
https://twitter.com/philhagen
https://docs.securityonion.net/en/2.3/so-import-evtx.html
https://github.com/nshalabi/SysmonTools
https://ericzimmerman.github.io/#!index.md
https://twitter.com/ericrzimmerman

README-Japanese.md 9/16/2022

28 / 29

Windows Event Log Analysis - Analyst Reference - Forward DefenseのSteve AnsonによるWindowsイ

ベントログ解析の参考資料。

WELA (Windows Event Log Analyzer) - Yamato SecurityによるWindowsイベントログ解析のマルチツー

ル。

Zircolite - Pythonで書かれたSigmaベースの攻撃検知ツール。

Windowsイベントログ設定のススメ

Windows機での悪性な活動を検知する為には、デフォルトのログ設定を改善することが必要です。 以下のサイトを

閲覧することをおすすめします。:

JSCU-NL (Joint Sigint Cyber Unit Netherlands) Logging Essentials

ACSC (Australian Cyber Security Centre) Logging and Fowarding Guide

Malware Archaeology Cheat Sheets

Sysmon関係のプロジェクト

フォレンジックに有⽤な証拠を作り、⾼い精度で検知をさせるためには、sysmonをインストールする必要がありま

す。以下のサイトを参考に設定することをおすすめします。:

Sysmon Modular

TrustedSec Sysmon Community Guide

SwiftOnSecurityのSysmon設定ファイル

Neo23x0によるSwiftOnSecurityのSysmon設定ファイルのフォーク

ion-stormによるSwiftOnSecurityのSysmon設定ファイルのフォーク

コミュニティによるドキュメンテーション

英語

2022/06/19 VelociraptorチュートリアルとHayabusaの統合⽅法 by Eric Capuano

2022/01/24 Hayabusa結果をneo4jで可視化する⽅法 by Matthew Seyer (@forensic_matt)

⽇本語

2022/01/22 Hayabusa結果をElastic Stackで可視化する⽅法 by @kzzzzo2

2021/12/31 Windowsイベントログ解析ツール「Hayabusa」を使ってみる by itiB (@itiB_S144)

2021/12/27 Hayabusaの中⾝ by Kazuminn (@k47_um1n)

貢献

どのような形でも構いませんので、ご協⼒をお願いします。プルリクエスト、ルール作成、evtxログのサンプルなど

がベストですが、機能リクエスト、バグの通知なども⼤歓迎です。

https://www.forwarddefense.com/media/attachments/2021/05/15/windows-event-log-analyst-reference.pdf
https://github.com/Yamato-Security/WELA/
https://github.com/Yamato-Security/
https://github.com/wagga40/Zircolite
https://github.com/JSCU-NL/logging-essentials
https://www.cyber.gov.au/acsc/view-all-content/publications/windows-event-logging-and-forwarding
https://www.malwarearchaeology.com/cheat-sheets
https://github.com/olafhartong/sysmon-modular
https://github.com/trustedsec/SysmonCommunityGuide
https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/Neo23x0/sysmon-config
https://github.com/ion-storm/sysmon-config
https://www.youtube.com/watch?v=Q1IoGX--814
https://twitter.com/eric_capuano
https://www.youtube.com/watch?v=7sQqz2ek-ko
https://twitter.com/forensic_matt
https://qiita.com/kzzzzo2/items/ead8ccc77b7609143749
https://qiita.com/kzzzzo2
https://itib.hatenablog.com/entry/2021/12/31/222946
https://twitter.com/itiB_S144
https://kazuminkun.hatenablog.com/entry/2021/12/27/190535
https://twitter.com/k47_um1n

README-Japanese.md 9/16/2022

29 / 29

少なくとも、私たちのツールを気に⼊っていただけたなら、Githubで星を付けて、あなたのサポートを表明してくだ

さい。

バグの報告

⾒つけたバグをこちらでご連絡ください。報告されたバグを喜んで修正します！

ライセンス

HayabusaはGPLv3で公開され、すべてのルールはDetection Rule License (DRL) 1.1で公開されています。

Twitter

@SecurityYamatoでHayabusa、ルール更新、その他の⼤和セキュリティツール等々について情報を提供していま

す。

https://github.com/Yamato-Security/hayabusa/issues/new?assignees=&labels=bug&template=bug_report.md&title=%5Bbug%5D
https://www.gnu.org/licenses/gpl-3.0.en.html
https://github.com/SigmaHQ/sigma/blob/master/LICENSE.Detection.Rules.md
https://twitter.com/SecurityYamato

